If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-36X-12=0
a = 1; b = -36; c = -12;
Δ = b2-4ac
Δ = -362-4·1·(-12)
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-8\sqrt{21}}{2*1}=\frac{36-8\sqrt{21}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+8\sqrt{21}}{2*1}=\frac{36+8\sqrt{21}}{2} $
| 2x/5-6x=9/7 | | X^2-12a+3=0 | | 5433x+x-6546=x | | 9x^=3x | | X³-8x+5=0 | | 3(x-2)+7=2x+4 | | (+33)-(+12)=n | | 3/x+7=5x+5 | | 4h-8=-32 | | 168=(180n-360n)/n | | k–4.1=-9.38 | | 10(n+4)=63.N= | | 8x-1=4x±19 | | 7x+13=2x-9=90 | | 2x+1=1.5x | | ∠A=6x−2B=4x+48 | | ∠A=6x−2B=4x+48∘ | | 4-3x/2=x-1 | | 3x+4Y=6Y+5X | | X+y=1900+2600 | | 11-4x=47 | | 55x-440=2475 | | Y=30+-3x | | 4/x-1=2/x | | a+18=29 | | a+18=28 | | 10+3x=–14. | | 8=10m=2m | | m-0.08=0.92 | | 19x=4.85 | | 7^(3x+4)=1/49 | | 2(x+6+x)=84 |